
ESD RECORD COPY
RETUfiN TO

SCIENTIFIC * TOHNKäL iffiWKfflttf OIVISION
(EST1), BUJLDM 1-211

COPY m. ßc _„

c.STI PROCESSED

^DC TA» D FROJ OFFICER

LI ACC233JON MASTER FILE

... ..

DATS-

CONTKOL

CY NJ* (_ _ OF

M, Mr 46007

An Experimental
On-Line Data Storage
and Retrieval System

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology,
with the support of the U.S.Air Force under Contract AF 19(628>500.
The computer time was supported by Project MAC, an M.I.T. research pro-
gram sponsored by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Contract Nonr-4102(01).

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

13!

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

AN EXPERIMENTAL
ON-LINE DATA STORAGE AND RETRIEVAL SYSTEM

/. F. NOLAN

A. W. ARMENTI

Group 28

TECHNICAL REPORT 377

3 FEBRUARY 1965

LEXINGTON MASSACHUSETTS

ABSTRACT

This report describes an experimental program system designed to test

and demonstrate on-line storage and retrieval of formatted data based

on complete internal descriptions of the files. The use of internal

descriptions allows each user (who need not be a trained programmer)

to define, modify, and cross-associate data files to suit his particu-

lar needs. The experimental program system was implemented by re-

mote use of the Compatible Time-Sharing System (CTSS) facilities of

Project MAC at the Massachusetts Institute of Technology.

Accepted for the Air Force
Stanley J. Wisniewski
Lt Colonel, USAF
Chief, Lincoln Laboratory Office

TABLE OF CONTENTS

Abstract

I. INTRODUCTION

II. SYSTEM AS SEEN BY USER

A. Control Commands

B. Commands for Manipulating Files
C. Commands for Manipulating Relations

D. Commands for Manipulating Data Fields

E. Block Data Transfer Commands

III.

IV.

FILE STRUCTURE AND RETRIEVAL LOGIC

A. Program — File Independence

B. Entries, Cells, and Linking
C. Basic Files
D. List Structures

E. Implementation of Relations

F. Modification of Basic Files

SYSTEM EFFICIENCY

A. Storage Efficiency
B. Time Efficiency

V. SYSTEM EXTENSIONS
A. Group Relations

B. Automatic Association

C. Tree Searching

D. Macro Commands

in

1

5

5

5

12

is

15

19

19

19

21

23

2S

2o

27

27

30

31

M

H
33

3S

AN EXPERIMENTAL
ON-LINE DATA STORAGE AND RETRIEVAL SYSTEM

I INTRODUCTION

This report describes an experimental program system designed to test and demonstrate

on-line storage and retrieval of formatted data based on complete internal descriptions of the
files. The use of internal descriptions allows each user (who need not be a trained programmer)

to define, modify, and cross-associate data files to suit his particular needs. The experimental
program system was implemented by remote use of the Compatible Time-Sharing System (CTSS)

at M. I. T.
In recent design of computer systems, increasing attention has been paid to the need of

users to have easier access to the computer. It has been recognized that processing each user's

job to completion without the user's interaction results in inefficient employment of the user's
time, wasted processing, long turn-around time, and excessive delay to final problem solution.

Considerations such as these have led to the development of facilities in which multiple users

have time-shared access to a general processing system.1 The Project MAC CTSS at M. I. T.

is one such system.2 Users of the CTSS system have direct, on-line access by way of input-
output consoles (e.g., teletype stations) to a large-scale computer. Since the individual user's
response time per step is typically much longer than the required processing time, he appears

to have full power of the processor as if it were his own.

The CTSS system has been used principally by experienced programmers and provides them
with a rapid, easy way to prepare, compile, debug, and run programs. But it is apparent that

multiple-user systems like CTSS can provide data processing service to the nonprogrammer as

well as the programmer and, when equipped with specially designed program systems, can give

solutions to problems or answers to questions without requiring the user to write a program.
Indeed it is clear that future developments in time-sharing will be characterized not only by a

sharing of computer capacity but by a time-sharing of information systems as well. Systems

are already under consideration which would make the services of a large library of programs
and data files easily available to a great number of users. Professor Corbato, one of the prin-

cipal designers of the M. I. T. time-sharing system, has described a future system as a multi-

user, multi-processor, multi-channel system with multiple access to a vast common structure
of data and program procedures for every user.

A critical component of the program system for such a multi-user facility is a set of general-
purpose data storage and retrieval programs. Such programs would respond to a broad class

of user demands and would be capable of searching voluminous stores of data, technical ab-

stracts, library routines, etc. The ideal system should permit a user to ask factual questions

written in a relatively unrestricted, natural language. The file structure should admit a high

degree of variability in format and cross referencing between files. The system should require

the user to have little or no knowledge of the file structure. The retrieval logic should give rapid

response to storage and retrieval requests, permit a high degree of complexity in the conditions of

of search, and require little or no program change as a consequence of file modification In ad-

dition, it is clearly important that both the file structure and retrieval logic allow for an open-

ended storage capacity; the system should be able to call upon files from many levels of aux-

iliary storage (automatically organized according to volume and frequency of access) wherever

the search requires it.

The extreme test of the flexibility of such a data storage and retrieval system is in the han-

dling of formatted files where the individual data fields differ in length, coding, and interpreta-

tion. The handling of textual data files is a special (and simpler) case of formatted files in which

symbol sequences are considered as variable-length fields of consistent coding throughout.

In any system designed to address the above goals, a central problem is the providing of in-

ternal file descriptions to accompany the stored data. The system must maintain information

on the logical composition of files into entries, the corresponding organization of individual data

fields within entries, the classification of data fields as to type, length, coding, units, etc., and,

for maximum user utility, the cross-associations of data within and across files. Only if this

information is available to the data storage and retrieval programs can the user easily review,

define, or query files, and cross-associate data in unanticipated combinations without under-

standing the internal structure of the filing system. Careful design of the method of internal

file description within the system can allow an open-ended variability in file types and formats

without requiring modification to the storage and retrieval programs.

In this report, we describe an experimental set of programs which was constructed to test

and demonstrate an on-line data storage and retrieval system based upon complete internal

description of formatted files. The system assumes an open-ended library of user's files which

can be called from auxiliary storage for processing by a name or number designation for each

separate set of files. Each file set contains, in addition to the stored data, the file description

information required for its interpretation and processing. Within any set of files the user is

free to redefine, modify, augment, delete, and cross-associate data as his interests dictate.

The level of versatility built into the system can be seen from the following list of its principal

features:

(a) The file set can contain many files, each having its own content and
logical organization.

(b) The user never need be concerned about the length of his files. All
files are variable in length. The total amount of information to be
stored is only limited by the total storage capacity.!

(c) All formatting is done by the system. The user refers to file contents
by name only. The user is therefore relieved of any need to know about
the specific structure of his files.

(d) The user can redefine or modify files on-line, using ordinary English
commands and referring to all files or parts of files by name.

tThe amount of data in a single file set in the present system is core limited, but this is not an inherent feature
of the system.

(e) The user can establish relations between files or parts of files. This
allows him or organize the same set of data under a number of category
headings or data from a number of different files under a single category
heading. This multiple association of data is automatically carried out
by the use of list structures; no duplicate storage of data is necessary.

(f) The system prints instructions at the request of the user wherever
instructions might be needed. The user does not have to refer to a
manual or code list. A new user can begin to use the system without
any prior training or any knowledge of programming.

(g) The system detects most frequent clerical errors such as misspellings
or incorrect file identification and permits the user to make corrections
immediately.

(h) The system provides the user with descriptions about any of the files or
relations in the system. This can be a great convenience to the user who
has created a number of files and/or data associations and does not
remember which relate to the information he wants.

A file in this system is a set of entries. Each entry consists of a set of data fields which

describe one of the objects covered by the file name. For example, consider a Personnel file.
The entries in such a file describe individuals and each entry will include data fields like the

individual's name, his age, his weight, date of birth, etc. In this system, any file may have an ar-

bitrary number of data fields/entry; however, for any given file, every entry must have the same

data fields. If the user, for example, wants to include "occupation" as one of the data fields in

his Personnel file, then the "occupation" data field must appear in every entry of the file. We
may refer to such a file as a fixed-format file. The number of data fields per entry, the number
of entries per file, and the number of files are all variable.

At first appearance, the fixed-format rule (requiring the same set of data fields per entry
for every entry in a given file) may appear as a limitation on the format of files which can be
handled by the system. Most data filing problems do require additional flexibility in three
important forms: the variable-length data field, the repeated field, and the subfile. All three

deviations from a fixed-format file are allowed in the system.

The variable-length field may be illustrated by the common example of a "remarks" field

in filed entries, where an arbitrary-length text sequence may occur. All such variable-length

fields are automatically replaced in this system by a fixed-length pointer to an address in a

common pool of variable-length data.
The repeated field may be illustrated by the example of multiple telephone numbers per in-

dividual in a telephone directory. Here the field is of fixed length but the number of different

values to be stored is variable. This is actually a special case of a subfile in which the subfile

consists only of a simple list. In general, a subfile consists of an arbitrary number of entries
of different content than the entries to which they belong. For complete generality, it is neces-

sary and sufficient to allow subfiles themselves to have subfiles to any number of levels. This

capability is provided in the system by the use of relations, which allow the user to associate

any two files, not only for the simple file-subfile relationship but also for more complex cross-

association of data.

The user creates an association between any two files by defining the relation and giving it

a name. A relation associates with each entry of one file a set of entries from a second file.
The first file is called the "parent" file and the second file is called the "linkee" file.

An entry from the parent file is called the "parent" entry and the subset of entries from the

linkee file with which it is associated is called its "subfile." The relation between a subfile and a

DEPARTMENTS PERSONNEL

(assignment)

UtKANIMCNI 1

BAKER

HARRISON

DEPARTMENT 2 ROGERS

DEPARTMENT 3

1
• ROBERTS

THOMAS

Fig. 1. Example of subfile relation.

13-28-60071
VANDERBILT

parent file requires the subsets of linkee entries to be disjoint (i.e., each entry of the linkee file

has at most one parent entry).'

Figure 1 illustrates a subfile relation. Two files are shown, one containing entries describ-

ing departments in an organization, the other containing entries describing personnel who are
assigned to the departments. These two files are associated by a relation called "assignment."

Under this relation, the individuals named Baker, Harrison, and Rogers are associated with

Department 1, Roberts and Thomas are associated with Department 3, etc. A parent entry

need have no entries in the linkee file associated with it. Conversely, a linkee entry need not

be related to any parent entry. Thus, Department 2 has none of this class of personnel as-
signed to it and Vanderbilt is unassigned.

When a relation is defined between two files, the system associates the subfile entries

according to some ordering rule on one of the data fields of the subfile. The user is asked by
the system to give the ordering rule and the field on which the ordering is to be done. Under
the assignment relation of Fig. 1, for example, the personnel could be ordered alphabetically by

last name for each department (as illustrated) or numerically by age (if age is one of the data

fields in the Personnel file).

t A method for relating nondisjoint subsets of linkees to parents has been worked out but not implemented in the
model. We have called this type of relation a " group" relation. The technique for implementing it is described
in Sec. V.

t We have deliberately kept the files very simple for our example.

The ability of a user to relate files in the system and to search on these relations is one of

the powerful features of the system. It gives the user great latitude in establishing cross ref-

erences between files and getting responses to queries from different files. The user is free to

create as many files and as many relations as he chooses. He can therefore cross reference the

same files in many different ways if this serves his purpose. Each relation is independent of the

others. A file may take part in any number of different relations either as parent or linkee.

The same file can be both parent and linkee in a relation. Multiple users can define relations on

one another's files without interfering with each other. The one restriction here is that each file

name and each-relation name be unique to the file set. Similarly, within a file, data field names

must be unique. The system responds to a violation of these rules by printing an appropriate

error message and requesting the user to provide an alternative name.

The experimental model was implemented on the Project MAC CTSS and is now operational.

Since it is an experimental system, it operates as an independent user program; it is not a part

of the CTSS program facilities on call to all users. Since we were among 100 users, our quota

of disk CTSS storage was limited; therefore, we deliberately adopted a few restrictive conventions.

These conventions will be made clear later in the report.

In Sec. II, we detail the system operations from the user's point of view. In Sec. Ill, we

describe the internal makeup of the files and procedures employed in operating on them. Section

IV describes the efficiency of the system in the use of storage and in processing time. Finally,

in the Sec. V, we indicate some limitations of the experimental model and how it could be extended

into a fully developed system.

II. SYSTEM AS SEEN BY USER

The user has control of the data storage and retreival system through a set of commands

which he can type at a consolei The current repertoire of commands falls into five broad classes.

(a) Control Commands

(b) Commands for Manipulating Files

(c) Commands for Manipulating Data Relations

(d) Commands Block Data Transfer Fields

(e) Block Commands

A. Control Commands

Four commands currently exist which provide the user with general control over the system

operations. To find out all the commands that are available to him, the user types * CHOICES.

The command *DONE is used in various places to indicate the termination of a list of inputs.

The command * RETURN is used to allow the user to exit from a particular sequence and

return to command status.

At the start of operation, the user specifies the tape number on which the file set of interest

is stored. Different sets of files may be used, each with its own tape number. The command

*START AGAIN permits the user to have a new set of files read into core storage.

B. Commands For Manipulating Files

These commands permit the user to define a new file, enter data into existing file, search

a file, delete files, and obtain a description of any file in the current set of active files.

.»DEFINE FILE
FILE DEFINITI0N. D0 Y0U WANT INSTRUCTI0NS;YES
PR0VIDE THE F0LL0WINGC12 CHARACTER MAXIMUM F0R EACH):
NAME 0F FILE
TYPE 0F FILECNAMED 0R NUMBERED)
THE NAME 0F EACH DATA FIELD F0LL0WED BY ITS C0DING
ACCEPTABLE C0DINGS ARE THE F0LL0WING:
BCD,INTEGER,FLT. P0INT,BCD LIST,INTEGER LIST,FLT. PT. LST

A CARRIAGE RETURN MUST F0LL0W EACH INPUT TERM.
THE W0RD »D0NE TERMINATES INPUT,

1-28-

C0MPUTER
NAMED
RENTAL

"INTEGER
ADD TIME
FLT. P0INT
CYCLE TIME
FLT. P0INT
C0RE ST0RAGE
INTEGER
DRUM ST0RE
INTEGER
W0RO SIZE
BCD
SPEC FEATURE
BCD LIST
»D0NE

THE INPUT TABLE F0LL0WS:

C0MPUTER NAMED
RENTAL INTEGER
ADD TIME FLT. P0INT
CYCLE TIME FLT. P0INT
C0RE ST0RAGE INTEGER
DRUM ST0RE INTEGER
W0RD SIZE BCD
SPEC FEATURE BCD LIST

IS THIS WHAT Y0U WANT. IF N0T,TYPE 'N0f AND START AGAIN.
IES
FILE SET-UP C0MPLETED.

C0MMAND EXECUTED.

GIVE C0MMAND 0R TYPE »CH0ICES

Fig. 2. Example of response to *DEFINE FILE.

To define a file, the user types the command *DEFINE FILE.t The system then asks the
user to provide a file name, the name of each data field, the coding type for each data field, and

the file type. The six coding types now handled by the system are BCD, integer and floating point
and, for repeated fields, lists of these three types. The file type, which is named or numbered,

distinguishes files in which the entry name is alphabetic or numeric.

Figure 2 is an example of a dialogue between a user and the system following the command

DEFINE FILE. The file being defined is one which will contain the name and major charac-

teristics of commercial computers and is called "Computer."

The operations of defining a file and entering data into a file are independent. A file must

already have been defined before data can be entered into it. However, a user can define a file

without entering data. In this case, the file is empty and all that appears in the system is the

file description (the file name, its data fields, field coding, etc.).

To enter data into a defined file, the user types the command * INPUT ENTRIES. (This

command is useful for entering a small file or modifying files on-line; later commands will
describe the method of entering large files from tape recordings under on-line user control.)
The system asks the user to provide the file name. It then types the name of each data field

and the coding specification for each.. The user then types the data values for each data field

of an entry. When the last data value has been typed, the completed entry is entered into the
file. As many entries as desired can be added to the file in this way.

If relations have been defined on the file, the name of each is typed by the system and the

user must then give the name of each parent entry (if one exists) for the data entry being added

to the file.
Figure 3 is an example of the system response to the command * INPUT ENTRIES. In the

example, entries are stored in the Computer file set up by the * DEFINE FILE command illus-

trated in Fig. 2.

To search a file, the user types the command * SEARCH FILE. The system types out a
list of the files that are currently active and asks the user to name the file to be searched. When

this is given, the system types a brief description of the file and provides the user with a sample
entry. The user is then asked to provide the data field on which the search is to be made, the

conditions of the search, and the reference or test value for the condition. At present, the
system will search on the conditions "equal to," "less than," "greater than," "less than or equal

to," and "greater than or equal to."

Figure 4 is an example of the system response to the command * SEARCH FILE. The search

was performed on the Computer file. Two searches were conducted: one asked for full entries

to be printed on computers having a cycle time less than 4.0u.sec; the other asked for the name

only for computers with a core storage greater than 32,000 words.
The brief description of the file printed before the search request is an aid to the user in

formulating his search conditions. A separate command * DESCRIBE FILE can also be used to

get such a file description. By making a file description available, the system relieves the user

of the need to remember the data field names or general content of a file.
In addition to the command for describing a file, defining a file, entering data, and search-

ing a file, the system includes the following:

t Commands are distinguished from other inputs by a leading asterisk(*).

t In this example and in those that follow, the information typed by the user is underlined.

«INPUT ENTRIES

TYPE:
FILE NAME
*l NSTRUCTI 0NS 0R *N0

-28-6009

C0MPUTER
»INSTRUCTIONS

F0R EACH ENTRY T0 BE ADDED:
1. WAIT UNTIL 'READY* IS TYPED
2. LIST C0NTENTS 0F THE DATA FIELDS

A. IF S0ME FIELD IS ITSELF A LIST,
A BLANK LINE SIGNIFIES THE END 0F THE LIST

B. F0RMATS ARE:
F0R BCD : FIELD LENGTH-6, LEFT JUSTIFY DATA
F0R INTEGERS : FIELD LENGTH-12, RIGHT JUSTIFY DATA
F0R FLT. PT. : FIELD LENGTH-16, PR0VIDE DECIMAL PT.

3. TYPE THE PARENT 0F THIS ENTRY F0R EACH RELATI0N LISTED
4. T0 TERMINATE INPUT 0F ENTRIES, PRESS CR AFTER 'READY* IS TYPED

DATA FIELDS
NAME C0DING

NAME BCD
ADD TIME FLOATING POINT
C0RE ST0RAGE INTEGER
CYCLE TIME FLOATING POINT
DRUM ST0RE INTEGER
RENTAL INTEGER
SPEC FEATURE BCD LIST
W0RD SIZE BCD

RELATIONS
THERE ARE N0 RELATIONS

READY

IBM 7094 I I
1.4

32
1.4

186
160

IN'RUP
16XR'S
FLT.PT
IN'ADD

64B

Fig. 3. Example of response to *1NPUT ENTRIES.

READY _. .
CDC 3600 1-28-60091
2.0

262
1.5
ö7ö~

IN'RUP
6XR'S
FLT.PT
IN'ADD

186

READY
UNI VAC 1107
1.0

65
1.0
0.0

15
IN'RUP
15XR'S
TLT.PT
IN'ADD

36B

READY
DEC PDP-6
3^1

262
iuo

8
IN'RUP

T5XTTS
FLT,PT
IN'ADD

36B

READY
DEC PDP-1
10.0

65
5.0

131

IN'RUP
IN'ADD

188

Fig. 3. Continued.

♦SEARCH FILE
-28-6010

THE ACTIVE FILES ARE :

C0MPUTER
H0ME ADDRESS
STREET

PR0VIDE FILE NAME:C0MPUTER

(FILE DESCRIPTI0N)

C0MPUTER IS A FILE WITH NAMED ENTRIES.
N0. 0F DATA FIELDS PER ENTRY- 7

SAMPLE ENTRY F0LL0WS:

ENTRY: CDC 360C
ADD TIME : 2.00
C0RE ST0RAGE" : 262
CYCLE TIME i : 1.50
DRUM ST0RE i : 0
RENTAL : 55

SPEC FEATURE: : IN'RUP
6XR'S
FLT.PT
IN'ADD

W0RD SIZE ! 48B

(START 0F SEARCH)

PR0VIDE FIELD NAME: CYCLE TIME
PR0VICE C0NDITI0N(EQ,LT,GT,LT0REQ,GT0REQ):LJ.
PR0VIDE TEST VALUE(FLTG. P0INT NUMBER): «u0
D0 Y0U WANT FULL ENTRIES PRINTED: YJ£

(START 0F SUBFILE)

ENTRY: CDC 3600
ADD TIME : 2.00
C0RE ST0RAGE : 262
CYCLE TIME l l 1.50
DRUM ST0RE : 0
RENTAL : 55
SPEC FEATURE : IN'RUP

6XR'S
FLT.PT
IN'ADD

W0RD SIZE : 48B

Fig. 4. Example of response to * SEARCH FILE.

10

ENTRY: IBM 7094 II
ADD TIME : : 1.40
C0RE ST0RAGE" 32
CYCLE TIME ! 1.00
DRUM ST0RE : 186
RENTAL l 160
SPEC FEATURE! IN'RUP

16XR'S
FLT.PT
IN'ADD

W0RD SIZE : 64B

(END 0F SUBFILE)
N0. 0F MATCHING ENTRIES-

- 28-60lOl

(START 0F SEARCH)

PR0VIDE FIELD NAME: C0RE ST0RAGE
PR0VI DE C0NDI Tl 0N(EQ,LT,GT,LT0REQ,GT0REQ) :GJ_
PR0VIDE TEST VALUE(6 DIGITS): 32_
D0 Y0U WANT FULL ENTRIES PRINTED: N0

(START 0F SUBFILE)
CDC 3600
DEC PDP-1
DEC PDP-6
UNIVAC 1107

(END 0F SUBFILE)
N0. 0F MATCHING ENTRIES-

(START 0F SEARCH)

PR0VIDE FIELD NAME: «RETURN

C0MMAND EXECUTED.

GIVE C0MMAND 0R TYPE »CH0ICES

Fig. 4. Continued.

11

(1) *LIST FILES. The system lists all active files by name.

(2) *PRINT FILE. The system prints out the entry name of each entry in the
file specified by the user.

(3) "FIND VALUE. The system gives the data value for a particular data field
in a file. The user is asked to specify the name of the file, the name of the
entry, and the data field.

(4) «DELETE FILE. The system removes the designated file from the system.

C. Commands For Manipulating Relations

These commands permit the user to establish and name relations between any two active

files, to search files under an already defined relation, obtain parent or linkee entries for

selected relations, and to delete existing relations. A relation, it will be recalled, associates
with each entry of a "parent" file a subset of entries from a "linkee" file.

To define a relation, the user first types the command * DEFINE RELATION. The system

then asks the user to provide the name of the parent file, the name of the linkee file, and the

ordering field. If both the parent file and the linkee file have more than one entry, the system

requires the user to specify for each file which entries are to be associated. To use our earlier

example, if individuals in a Personnel file are to be associated with departments in the Depart-

ment file under a relation called "assignment," then the user must identify the set of individuals
to be assigned to each department. If either file is empty, however, the system simply sets up
the required programming structure for the relation. The user will be asked to make the proper
associations between entries at the time they are entered into the files.t In the case of batched

data inputted from tape, the parent names can appear as part of each data record. This latter
technique would be the normal method of establishing standard file-subfile relationships when

large files are initially entered into the system.

Figure 5 is an example of an exchange between the user and system for the command

«DEFINE RELATION. The example shows the former case where file entries already exist
and the association of parent and linkee entries is made on-line.t

Once a relation has been defined, the user can search the files under that relation. To do

this, he uses the command * SEARCH RELATION. The system asks him for the name of the

relation, the conditions of the search and the reference value against which the file entries are
to be compared. Using the Personnel file and Department file again as the related files and
"assignment" as the relation, the user could ask, for example, for a listing of all assignments,

by department, of individuals whose last name comes after the reference name "Baker" alpha-
betically. The appropriate entries will be listed in order.

In addition to the commands for defining a relation and searching on a relation, the system
also includes the following commands:

t Section V-B describes a system extension which would, in certain cases, permit a user to relate files without
naming every associated entry.

X Figure 5 illustrates the definition of a relation between two independently existing files, a file containing the
name of cities and their characteristics (City file) and a second file containing the names of individuals and
information about their home addresses (Home Address file). The relation called "Location," in this case, could
be a substitute for the location data field in the Home Address file.

12

-28-6011
»DEFINE RELATI0N

LIST:
NAME 0F PARENT FILE
NAME 0F LINKEE FILE
NAME 0F RELATI0N
0RDER FIELD

F0R EMERGENCY EXIT DURING INPUT 0F AB0VE PRESS 'BREAK' 0NCE.

QiH
H0ME ADDRESS
L0CATI0N
NAME

D0 Y0U WANT INSTRUCTI0NS» YES

AUT0MATIC M0DE

A C0DE NUMBER WILL BE PR0VIDED F0R EACH ENTRY IN THE LINKEE FILE. AFTER THIS, THE
ENTRIES IN THE PARENT FILE WILL BE PRINTED 0NE AT A TIME AL0NG WITH S0ME FIXED DATA
FIELDS. F0R EACH 0F THESE ENTRIES LIST THE NUMBERS 0F ITS RELATED SUBFILE ENTRIES.
THE NUMBERS MUST BE RIGHT JUSTIFIED WITHIN THE INDICATED FIELDS. T0 TERMINATE INPUT
F0R A GIVEN ENTRY LEAVE A FIELD BLANK AND PRESS 'CARRIAGE RETURN.'

MANUAL M0DE

LIST THE NAMES 0F THE PARENT ENTRIES F0LL0WED BY THE NAMES 0F THEIR RELATED SUBFILE
ENTRIES. T0 TERMINATE THE LIST 0F SUBFILE ENTRIES LEAVE A LINE BLANK. T0 TERMINATE
INPUT LEAVE AN0THER LINE BLANK. WAIT F0R THE W0RD 'READY' BEF0RE TYPING IN EACH
GR0UP 0F PARENT AND LINKEES.

WHICH M0DE D0 Y0U WANT* MANUAL

READY

W0BURN
ALLEN MARGAR
ATHANS MICHAEL
C0ftR DAVID F

READY

CAMBRIDGE
ANDERS0N ALL
C0HEN MITCHt
CURTISS ARTHUR
FALB PETER L

Fig. 5. Example of response to *DEFINE RELATION.

13

READY 1-28-6011)

C0NC0RD
ANDREWS MARI
ARMENTI AMED10
BLATT H0WARD
CRAIG JEAN~G
DICKS0N STUART
FA I ETA RITA

READY

8EDF0RO
ARN0LD CHARLES
BARCK PETER
B0YCE SHIRLEY
CR0WTHER TH0MAS
D0DGE D0UBLAS

D0DGE D0UBLA IS N0T A LINKEE ENTRY. TYPE IN C0RRECT NAME.

READY

P0DGE D0UGLAS

D0DGE D0UGLA IS N0T A PARENT ENTRY. TYPE IN ,*G00F' AND C0NTINUE FR0M THE P0INT
0F ERR0R.
*G00F
ARLINGT0N
ARN0LD NANCY
BAYNES WILLIAM
CIANCI0L0 LAWRENCE
DAVIS R0BER1
FELDMAN JER0ME

READY

Fig. 5. Continued.

1-1

(1) *LIST RELATIONS. The system lists all relations that are defined in the
system.

(2) «DESCRIBE RELATIONS. The system prints out a description of the
relation specified by the user.

(3) «FIND PARENT. The system asks the user for the linkee file name,
the name of an entry in that file, and the name of a relation defined on
the file. It then returns with the name of the parent entry under the
given relation. For example, if the file name is "Personnel" the entry
name is "Doe, John," and the relation is "assignment," it would return
with a parent name like "Department 28."

(4) «FIND LINKEE. This command is the dual of * FIND PARENT. The
system asks for the corresponding items of information and returns with
the names of all the linkee entries of the given parent. For example, if
the file name is "Department," the entry number is "28," and the relation
"assignment," the system will list all the individuals assigned to Depart-
ment 28.

(5) «RELATE ENTRY. This command provides the user with a means of
associating a new entry (or set of entries) with parents under an existing
(already defined) relation. The system asks for the name of the relation,
the name of the parent entry and the names of each entry to be associated
with that parent.

(6) «DELETE RELATION. The system asks the user for the name of the
relation to be deleted. The files which are related continue to exist in
the system but the given relation is removed.

D. Commands For Manipulating Data Fields

These commands permit the user to add a new data field to a file, delete a data field, or

update a field value.

To add a new data field to an active file, the user types the command «DEFINE DATA

FIELD. The user is asked to give the name of the file, the name of the new data field and the

data field type (i.e., integer, floating point, etc.). If the system cannot find the file name in

the list of active files, or if the data field name already appears for the file named, the system

prints an error comment and asks the user to try again. Otherwise, the system assigns space

in each entry of the file to the new data field and adds the name to the list of data field names for

that file.

To delete a designated data field from an active file, the user types the command «DELETE

DATA FIELD. The user is asked to type the name of the file and the name of the data field to

be deleted. The name field of a file can only be deleted by deleting the entire file, and a data

field which serves aä the ordering field for a relation can only be deleted after the relation has

been deleted. The system will notify the user if he attempts to violate these uses. Except for

these cases, the system responds to the command by returning data field space to available

storage and removing all references to the data field name in the basic files.

To replace a designated data field value with a new value from the console, the user types

the command «DEFINE FIELD VALUE. The user is asked to provide the name of the file and

the data field name. The system prints the name of each entry and the specified field, and the

user then types in the new data values.

E. Block Data Transfer Commands

For some purposes (e.g., for file changes or for small personal files), it is sufficient for

the user to update entries or add entries directly from the console. However, in most cases,

15

the inputs to be stored into a file come in large quantities. This would typically be true, for

example, of data acquired in laboratory field experiments where the volume of data recorded

would be very high. In such cases, the user wants to have the data read directly into his file

from special tape recordings. The «READ CARDS command is used for this purpose. For

this command, the (present) system views each tape record as being a card image, i.e., con-

taining no more than 80 columns of punched card information.

To enter a new file into the system the user proceeds in two steps:

(1) The file is defined using the « DEFINE FILE command. At this point,
the system has full information on the file and its constituent data
fields. The file exists as an empty file (no entries).

(Z) The user gives the command «READ CARDS. The system then asks
the user to provide the number of the data tape (card file),t the name
of the (defined) file into which the data is to be read, and the locations,
in terms of card columns, of the data fields on the external card image.

Figure 6 is an example of an exchange between the user and the system in response to the

command «READ CARDS. In this example, data are to be read into a file called "Visitors."
The Visitors file was defined as file with 11 data fields. These were called: Name, Author.
No., Organ. Code, Badge No., SPB 'X', CL, Purpose, Date Granted, Expires, Citizenship,

and VI. Code. The data tape may be viewed as a prestored deck of cards with the values
appearing in specified card locations. Upon execution of the * READ CARD COMMAND, the

user identifies the data fields applying to his data tape. This information is given to the system

in the form of a control card prepared on-line at the console.

The system types the starting column number of a data field (beginning with column 1) and

the user types the terminal number for the field. He then identifies the field by name. To ad-

vance along the card to a particular card column, the user types the number immediately pre-

ceding the desired column and strikes the carriage return key in place of the field identification.

To return to a previous card position, the user types any number which is less than the current
column number. These provisions permit the user to move along the card to select the required

field locations or to move backward on the card to correct an erroneous label. If the card col-
umn assignment exceeds the data field length originally defined for the file, the system ignores

the excessive columns. The data fields, as they apply to the data tape, need not be in the same
order as the data fields originally assigned to the file. All that is important is that the data

fields of the data tape be properly identified. The system also checks any relation for which the

data file is a linkee. For each record of the card file, the user can identify the parent entries

for each relation in the same way he identifies data fields. The names of each relation appear
at the head of the card file tape. Suppose, for example, the Visitor file of Fig. 6 was related

to a file called "Company" with Company as the parent file. Let us call the relation "employer."

Then "employer" would appear at the head of the card file tape containing data to be read into the

Visitor file. The record for each visitor on the card file would have the name of his company in

place of one of the card fields. The system would then treat the company name as the name of
a parent entry in the company file and would automatically relate each visitor entry to the appro-

priate company entry under the relation "employer."
The command «WRITE TAPE causes all of the user's file set to be written onto a specified

tape.

t In the CTSS system, this number actually references a "pseudotape" maintained on the auxiliary disk storage.

lb

«READ CARDS
PLEASE GIVE NAME 0F CARD FILE VISIT BCD
PLEASE GIVE NAME 0F SYSTEM FILE VISIT0R
I HAVE TRAVERSED THE CURRENT FILES WITH0UT FINDING Y0UR FILE.
D0 Y0U WISH T0 NAME AGAIN YES
PLEASE GIVE NAME 0F SYSTEM FILE- VISIT0RS
THE NAME 'NAME' IS RESERVED F0R THE PRINCIPAL DATA FIELD
USE CAR. RET. F0R NAME 0F AN UNUSED FIE\D

CARD C0LUMNS 01 T0 3J_
C0NTAINS DATA CALLED NAME

C0LUMNS 13 T0 32 WILL BE IGN0RED
CARD C0LUMNS 33 T0 37
C0NTAINS DATA CALLED AUTH0R. N0.
CARD C0LUMNS 38 T0 18_
C0NTAINS DATA CALLED 0RGAN. C0DE

C0LUMNS W T0 18 WILL BE IGN0RED
CARD C0LUMNS k9 T0 *i0_
CARD C0LUMNS 38 T0 18

C0NTAINS DATA CALLED

CARD C0LUMNS 49 T0 50

C0NTAINS DATA CALLED 0RGAN. C0DE

CARD C0LUMNS 51 T0 55

C0NTAINS DATA CALLED MöGE N0.

CARD C0LUMNS 56 T0 56.

C0NTAINS DATA CALLED SPB 'X'

CARD C0LUMNS 57 T0 58_

C0NTAINS DATA CALLED I FVFI 0F CL FARANCF

LEVEL 0F CLE D0ES N0T APPEAR IN CURRENT FILES. IS IT MISSPELT 1ES.

CARD C0LUMNS 57 T0 18

C0NTAINS DATA CALLED C]_

CARD C0LUMNS 59 T0 66

CONTAINS DATA CALLED PURP0SE

C0LUMNS 65 T0 66 WILL BE IGN0RED

CARD C0LUMNS 67 T0 72_

C0NTAINS DATA CALLED DATE GRANTED

CARD C0LUMNS 73 T0 78

C0NTAINS DATA CALLED EXPIRES

CARD C0LUMNS 79 T0 79

C0NTAINS DATA CALLED CITIZENSHIP

CARD C0LUMNS 80 T0 80

CONTAINS DATA CALLED VI. CODE

-28-6012

Fig. 6. Example of response to command *READ CARDS.

17

ECH0ING
C0LUMNS NAME TYPE

1 - 6 NAME BCD
7-12 NAME BCD

13 - 32 UNUSED
33 - 37 AUTH0R. N0. BCD
38 - h8 UNUSED
H9 - 50 0RGAN. C0DE B C D
51 - 55 BADGE N0. B C D
56 - 56 SPB 'X' BCD
57 - 58 CL BCD
59 - 64 PURP0SE BCD
65 - 66 UNUSED
61 - 72 DATE GRANTED BCD
73 - 78 EXPIRES B C D
79 - 79 CITIZENSHIP BCD
80 - 80 VI. C0DE BCD
IS THE AB0VE WHAT Y0U WANTED' YES

1-28-60121

C0MMAND EXECUTED.

GIVE C0MMAND 0R TYPE »CH0ICES

Fig. 6. Continued.

18

III. FILE STRUCTURE AND RETRIEVAL LOGIC

The file structure and retrieval logic of the model was designed to have the following critical

features without severely sacrificing time or storage efficiency:

(a) Independence of programs from file structure,

(b) Format variability,

(c) Cross referencing of files (i.e., association between files).

The mechanisms for providing these design features will be discussed in detail in what follows.

The following section will treat the questions of time and storage efficiency.

A. Program - File Independence

The independence of programs from file structure was achieved by setting up basic files

containing the descriptive information about all files in the system. While this is, in general,

a standard technique in system design, the way in which it is implemented in this system is

unique. Ordinarily, tables of descriptive information are fixed-format tables made up to hold
whatever information the designer might think is necessary for present and future uses of the

system t It is expected that such tables will require little, if any, future changes, and it is there-
fore assumed to be safe to have the table characteristics appear as constants to the programs

which use them. However, except for very specialized systems, this expectation is never re-
alized. Invariably, new requirements get placed on the system and the old tables no longer en-

tirely apply. So both the tables and the programs have to be changed.
Thus, it was necessary to minimize as much as possible the amount of programming changes

that would be required by future changes in the tables of descriptive information. We accom-

plished this by making the tables of descriptive information part of the over-all filing system.

The tables are themselves files just like the files a user might create. The descriptive informa-

tion is treated like ordinary filed data in the system.
The files containing the descriptive information are called the "basic" files and will be de-

scribed in detail later. These basic files not only contain descriptions of other files in the sys-

tem, they also contain descriptions of themselves. Because they are stored as data, the file
descriptions can be retrieved, modified, or updated just as any other data. Except for a very
small set of essential information within the basic files, changes can be made to the descriptive
information without altering the data storage and retrieval programs. The file structure and

programs are, therefore, virtually independent of any reorganization a user or system designer

might contemplate.

B. Entries, Cells, and Linking

The next two design features, format variability and cross referencing of files, are brought

about primarily by the use of list structures. The basic filing unit is an entry. Physically, an

entry can be made as large as necessary by linking together standard-sized portions of storage,
called "cells." Similarly, a file can be extended to any desired length by linking new entries to

those already in the file. The relations between files are implemented through list structures
that tie entries in one file to entries in another. Through the use of relations, the user can

effectively organize his files to suit his convenience.

tThe "TABLE SHOP" in LUCID and the "Dictionary" in Ref. 3.

19

- B 10 0 0 B 15

DATA

\
B 15 00 B 25

DATA

1
0 0 A 1 B 25

DATA

0 0 0 0

A 25 A 55

B 21*1 0 0

B 21 0 0 B 12

DATA

B 12
0 0 B 22

DATA

0 0 B 38
B dd

DATA

0 0 A 30 *
DATA

EMPTY

EMPTY

EXTENDED FIELD

NEXT ENTRY

Fig. 7. Sample file.

20

These features will be made clear in the system description that follows.

All files are constructed by putting together standard portions of storage units of fixed

length, called cells. Each cell has a number which uniquely identifies it. The system pre-

sently uses two kinds of cells, one eight registers long (A cells) and one two registers long

(B cells). While the number of cell types and cell lengths are constant in this version, there

is nothing inherent in either the file structure or retrieval logic which precludes making them

parameters. In constructing a file, the system selects the minimum number of cells necessary.

When a user defines a new file, he is asked to provide the system with the name and coding
of each field. From this information, the system determines the number of cells needed for an

entry in the file. The number of cells per entry is stored as an item of descriptive information

about the file. When data is put into the file, the system gets the cell needed from available

storage' and creates the entries. If more than one cell must be used for an entry, the system

stores a link which ties the cells. Variable length fields are handled in the same way A link
in the field position addresses the first member of a string of cells. Each member of the string
is similarly tied by links. In this way, a field in an entry can be extended to fit any content length.

Figure 7 illustrates a simplified version of a file. The file has two cells per entry and one field
is extended.

C. Basic Files

Within the system, the format of an entry is determined entirely by the names of the fields,
their positions in the entry, the coding required by each and the position of links which either
extend a field, tie one cell of an entry to another, or tie one entry to another entry. This format

information is contained in one of three basic files, (see Fig. 8) the Active file, the Data Field

file, and the Relations file, which the system maintains. These will be described in some detail

below. It is important to recall here, however, that the user need only know the name and coding

of each field in his file to set it up.*
The first of the three basic files in the system is called the "Active" file. The Active file

contains an entry for every file in the system including the basic files themselves. Each entry

has, as its data fields, the name of a file, the cell number of the starting entry of the file, the
number of cells each entry of the file uses (a single number), the file type, and a list of unused

positions in an entry (called "empty space"). The file type specifies one of two types in the cur-

rent system: a "named" file or a "numbered" file. This simply distinguishes a file whose
entries are named alphabetically from one whose entries are numbered. The distinction is use-

ful for searching on files, but is not necessary. The empty space field is an extended field.

The Data Field file contains an entry for each data field of the files listed in the Active

file. An entry in the Data Field file has as its data fields, the name of a data field, the position
of the data field in the entry, and the field coding. Since the Data Field file is itself one of the

Active files, the Data Field file contains entries for its own data fields. The field coding iden-

tifies the coding of the data values that will appear in the data field. The present version of the
system allows six types of coding: BCD (alphanumeric), integer, and floating point, and lists of

t All empty (unused) cells are maintained by the system as push-down lists, one for each size of cell used (two
in the present system).

X In a fully developed system, the user could supply other items of information, such as the range within which a
data field value may fall. But we see no need to require format information except for checking and special
output purposes.

21

A CELLS

ACTIVE FILE
13-28-60551

N

CELLf ENTRY1^

2 3

NAME*

4

FILE - START f

5

CELLS /ENTRY

6

TYPE-OF-FILE

7

FIELDS/PARENT
FILE 1 REL'S

8
LINKEEI EMPTY 1
REL'S 1 SPACE 1

1

2

3
4

4 1

4 2

4 3

4 4

2 2

2 3

2 4

4 2

(Dummy

ACTIVE

DATA--

R E L A T 1

Entry)

- F 1 L E S

F 1 E L D S

0 N S

1

5

18

1

1

2

0

0

0

1 7

1 10

1 5

1 18

7

7

7

0 18

1 19

7

1 0
1 4

DATA FIELD FILE

CELL f ENTRYf NAME f FIELD PLACE FIELD TYPE UNUSED UNUSED FIELDS/FILE |

5 4 5 2 6 ASCEND -PLACE 24 2 6 4 4 1
6 4 6 2 7 BRANCH -PLACE 14 2 8 4 4

7 4 7 2 8 CELLS/ ENTRY 10 2 9 4 2

8 4 8 2 9 D S C E N D -PLACE 16 2 1 3 4 4

9 4 9 2 10 EMPTY- SPACE 16 4 2 12 4 2

10 4 10 2 1 1 F 1 E L D - PLACE 8 2 1 1 1 3

1 1 4 1 1 2 12 F 1 E L D - TYPE 10 2 10 4 3

12 4 12 2 13 F 1 L E - S TART 8 2 1 7 4 2

■ 3 4 13 2 14 ORDER- FIELD 12 0 2 14 4 4

14 4 14 2 15 ORDER- RULE 10 2 1 5 4 4

15 4 15 2 16 R E L A T ' N - T Y P E 8 2 16 4 4

16 4 16 2 17 RETURN -PLACE 26 2 5 4 4

1 7 4 17 4 3 T Y P E - 0 F - F 1 L E 12 2 7 4 2

RELATIONS FILE

CELL* ENTRYt NAME f RELAT'N-TYPE ORDER -RULE ORDER -FIELD BRANCH-PLACE DSCEND - PLACE

2 21 2 19 F 1 E L D S /FILE 2 0 0 13 15
2 22 2 20 L 1 N K E E - R E L ' S 3 0 0 15 30

2 23 4 4 P A R E N T - R E L ' S 3 0 0 14 27

CELL1 UNUSED ASCEND-PLACE RETURN-PLACE PARENT-REL'S LINKEE -REL'S

2 4 18 - 16 2 19 3 20 4 2 2 18 3 1 8 4 3

2? 4 19 31 32 2 20 3 18 4 2 2 20 3 20 4 4

23 4 20 28 29 2 l 3 3 19 4 2 2 19 3 1 9 4 4

B CELLS
CELL ENTRY DATA

0 4 0 2 1 1 1 1

1 4 1 2 2 12

2 4 2 2 3 13

3 4 3 4 3 14

4 4 4 2 5 18

5 4 5 2 6 19

6 4 6 2 7 20

7 4 7 2 8 21

8 4 8 4 4 zz\
LINK KEYS FIELD-TYPE

0 POINTER 0 BCD

1 BRANCH 1 INTEGER

2 OESCEND 2 FLTG. POINT

3 ASCEND 3 BCD LIST

4 RETURN 4 INTEGER LIST

5 UNUSED 5 FLTG. POINT

6 (SPARE)

7 EMPTY

RELATION TYPE ORDERING RULE

0 ONE WAY LIST o ALPHABETIC

1 TWO WAY LIST 1 NUMERICAL

2 ONE WAY RING 2 ARBITRARY

3 TWO WAY RING 3 SPECIAL

4 ONE WAY GROUF

TYPE-OF-FILE

0 NAMED
1 NUMBERED

t FIXED FIELD POSITIONS

Fig. 8. Basic files.

these three types. The latter three types of data fields are treated as extended fields which
branch to a list.

D. List Structures

Before describing the Relations file, something must be said about the list structures em-

ployed in the system. Since the early use of list structures (e.g., in Ref. 4) as a means for con-

verting a fixed-address memory into a variable-address storage space, there have been a num-

ber of variations of list structures proposed, fitted to special organizations of data. Perlis'

"threaded list" structures and Weizenbaums' "knotted list" are examples of such variations.

Restricting the system to any single list structure could place serious constraints on pos-

sible file formats. These considerations led us to adopt a number of simple conventions which

would permit us to construct any list structure we might need.

The linking of objects (such as entries) in our system reduces, essentially, to five kinds of
links which must be distinguished to permit the system to traverse the files most effectively. A
link which associates an entry in one file with the subset of entries which make up its subfiles,

we call a "branch." (In general, this linking is equivalent, in list structure terminology, to the

linking of a header with a sublist.) A link which ties the subset of entries to its parent is called
a "return." A link which ties entries within a file (or list) in one direction is called a "descend"

link and in the opposite direction an "ascend" link. Finally, a branch link to a single member

subfile is called a "pointer." These five link types provide all that is required to tie compo-

nents of files in ways which make them readily accessible to the system routines. A 3-bit key
identifies the link type. The key also is used to identify an unused link space and an empty list.

Figure 9 summarizes the link nomenclature for the system.

Using these five kinds of links, we have constructed list structure types. It was intended

that the system monitor itself. Depending on the file processing history, the system would in-

corporate the list structure which would optimize the storage and retrieval process. A simple
list structure involving only a one-way tying of file entries would be adequate for processing

relatively short files, but inadequate for lengthy files. For example, consider a search by the

system programs of a very long subfile where the first entry has been found to meet all the
search conditions. It would be wasteful to then have the system programs traverse the entire

 LINK FIELD |3-26-<86 711)1

MEANING OF ADDRESS

POINTER TO FILE ENTRY

Fig. 9. Link code. B BRANCH TO SUBFILE

D DESCEND TO NEXT FILE ENTRY

A ASCEND TO PRECEDING ENTRY

R RETURN FROM SUBFILE TO PARENT FILE

U UNUSED LINK FIELD

C CELL LINK

E EMPTY SUBLIST INDICATOR

ASSOCIATIVE

LINKS

23

U-?»-tOI4|

i s

jn

JLJ

"in rr

(Q) (b)

(c) (d)

Fig. 10. List structures: (a) One-way list; (b) Two-way list; (c) One-way ring; (d) Two-way ring.

14

subfile to find the return link to the parent entry. At some point, it clearly becomes worthwhile

to change from a simple list structure to a structure having return links at strategic places in the

file. By maintaining a record of the operations performed on the various files, the system could

periodically decide, on the basis of this record, whether to convert from a simple list structure

to one of more complexity, or, on the contrary, to convert from a complex structure to a simpler

one.

Monitoring programs do not exist in the present model. For purposes of illustrating their

uses, however, the different list structures have been incorporated into the basic files.

Figure 10 illustrates the four types of list structures used in the system.

A string of entries linked by either a descend link or ascend link is a one-way list. If the
entries are linked by both a descend and ascend link, the string is called "a two-way" list. The

string of entries consisting of a parent entry in a file A with a pointer or branch to a list of

entries in a file B is called a "simple" list. In a simple list, the last entry of subfile B may
have an "end of list" code (EOL) or a return in the descend link position.

A list whose members are linked successively to each other is a "ring." Any member of

a ring can be designated the "first" member. A simple list whose subfile entries form a ring

with returns from each entry to the parent is called a "threaded" ring. If the links which form

the ring are descend links only, the list structure is a "one-way threaded" ring. If the list
structure uses both ascend and descend links, it is a "two-way threaded" ring. In the present

model, we have adopted the convention that all rings will be threaded rings. We shall therefore

refer to all such list structures as one-way or two-way rings.

E. Implementation of Relations

A relation defined by a user is implemented internally by the system as one of the four types

of list structures. All relations initially appear in the form of a simple list. The list structure

type is assigned a code, called the "relation type," which is entered as one of the items of descrip-
tive information in the Relation file, the third of the basic files. There exists an entry in the

Relations file for each defined relation in the system, including those defined on the basic files

themselves. In addition to the relation type, the Relations file carries the name of every relation,

the ordering rule for that relation, the name of the data field on which the ordering is done, and
the relative positions within entries of the links used to implement the relation.

The cross-association within the basic files themselves can be seen in Fig. 8, already

referenced. In Fig. 8, the basic files contain only information describing themselves. Each
line is a cell. The A cells are numbered from 1 to 23, the B cells from 0 to 8.' If a new file
were defined, the system would use the free A cells beginning with the next number available
from the list of available cells to add an entry in the Active file and entries in the Data Field file
for each data field. If a new relation were defined, the system would get two available A cells

and add an entry to the Relations file. Each of the three basic files is organized as a simple list
with the entries linked on the entry link and ordered on the name field. By convention, every file

has this minimum association. For this reason, no relation name has been given to this associa-

tion. The associations between the Active file, the Data Field file, and the Relations file, however,

have been given relation names and entered in the Relations file. The subfile relation between

the Active file and the Data Field file is called "Fields/File" and is structured as a one-way ring.

t In practice, of course, the cell numbers need not be consecutive, since they are joined as a link structure.

25

There are two relations associating the Active file and the Relation file. One of these is called

"Parent Relations" (Parent-Rel's) and it associates entries in the Active file with entries in the

Relations file for which they are parents. The other is called "Linkee Relation" (Linkee Rel's)

and it associates entries in the Active file with entries in the Relations file for which they are

linkees.

F. Modification of Basic Files

While all of the information presented in the basic files is regarded as essential to the oper-

ation of the system, only a small part need be fixed in position. The files marked with a dagger

(t) in Fig. 8 are the data fields whose positions must be fixed for the system. Otherwise, the basic

files may be altered like any other file in the system. For example, we presently foresee the

possibility of including the acceptable range of values for a data field as one of the pieces of in-
formation describing a data field. This would be implemented as a new data field in the Data

Field file. The user (system designer) would implement this change on-line by using the stand-

ard commands to define a new data field for an existing file. To make this change, the system

will first determine if there is enough empty space in a Data Field file entry, as currently organ-

ized, to permit the inclusion of the new data field. If the key in the empty space link indicates

that a word position is available, the system will assign the data field to that word position. The

new data field information will be added as an entry in the Data Field file in the same way as with

any new entry for a file. If no word positions are available, the system will enlarge the Data Field

file by adding a second cell to each entry. The first position in the new cell will be given the

name of the new data field.
Notice that the above steps for augmenting the basic files are performed by the same pro-

cedures used in altering any file in the system. The basic files contain sufficient information

descriptive of themselves to allow their own extension. Figure 11 illustrates the use of infor-

mation from the basic files by the system routine for defining a new data field to be added to a
file. In Fig. 11, the numbers listed next to the logical steps in the flow diagram indicate the

information used by the routine as indicated in the accompanying list.
As one can see from this example, the procedures for processing the files, no matter how

complex, rest on a relatively small number of operations. The principal routines in the system
simply search the basic files for descriptive information. The various processing routines,

therefore, like the routines for searching files, searching on relations, defining a new file, or
deleting a file, are basically independent of the file formats or file contents. Searching for the

descriptive information is carried out in the same fashion as searching for any other data. The
starting location of the Active file is fixed. Within an Active file entry, the position of the data

field giving the starting location of every file (including the important case of the Data Fields
file) is fixed. Within the Data Fields file, the position of the field giving the field position for

any data field in the system is also fixed. With this information, the system programs can

search any one of the basic files and get any information needed to proceed further. Thus, we

have effectively built a "boot-strapping" feature into the system to allow for future system mod-

ification.
Furthermore, we have chosen a file structure, i.e., an organization based on data fields,

entries, and file relations, which is broad enough to accommodate any form of content arrange-

ment. These features make file additions, deletions, and general file reorganization possible

Z6

without the need to modify system programs. No matter what changes are made to the alterable

characteristics of the files, we are assured that no routine in the system will be affected.

IV. SYSTEM EFFICIENCY

One should distinguish between system utility and system efficiency. The utility of the sys-

tem to the user is based mainly on the versatility of the system in providing data storage and

retrieval functions to match his specific (and changing) information requirements. The flexi-

bility of the system in matching the user's needs has been illustrated in the preceding sections.

Such versatility of operations can only be achieved at some cost in processing time and storage

requirements over that which would be required in the (hypothetical) situation where the form
of data to be stored and the class of queries to be serviced were completely predictable and

unchanging. It is of interest to quantitatively relate the present system's efficiency with this

extreme case so as to verify that time and space requirements are not prohibitive and to il-
lustrate the dependence of time and space factors on the volume and other characteristics of
the data to be stored.

A. Storage Efficiency

Storage efficiency is mildly dependent on the choice of cell size. Too large a cell size re-
sults in extra waste of storage due to partially filled cells. Too small a cell size results in ex-

tra waste of storage due to the need for more cell linking. It can be shown that the optimum
single cell size is the square root of the average volume of information (data and links) to be
stored per entry. Efficiency can be further improved, of course, by using two or more cell sizes

as standard. In the present system, we have used eight-word cells for all file entries and two-
word cells for extended fields.

The efficiency of the system in use of storage can be considered in two parts: first, the

storage required for the basic files and second, the overhead storage required in the data files
themselves for cell linking, associative linking (for the relations), and unused space (due to

partially filled cells).

The number of words required for storage of the basic files is given by

202 + 8F + 8D + 16R

where
F = number of user's files

D = number of user's data fields

R = number of user's relations.

The 202 words represent the initial form of the basic files ' (before any user data are introduced)

and hence describe only themselves. These very moderate requirements are well justified by

r.he data file-program independence they provide. Note that the basic file storage requirements
are independent of the number of entries per file, due to the general fixed-format rule used.

The overhead storage required in the data files themselves can be computed on an entry

basis. For a fixed cell size the fractional overhead in cell linking (and entry linking within a
file) is constant. Assuming } word per link, one finds that the fractional overhead is 6.25 and

25 percent respectively, for the 8- and 2-word cells. Since most of the data are stored in 8-word

"See Fig. 8.

27

Type:

File Name (F)
Data Field Name (DF)
Data Field Type

3-28-6015

1,2,3
No F not found

Give correct
name

1,2,4
Yes Give DF a

new name

,, No 2,6,7,9

Compute the number
of cells needed to add

DF

Insufficient cells
in available
storage

EXIT

the entry for F ^-^
be enlarged to
accommodate ^^

Yes Add i cell
2,9

entry of F

No
Assign the first
free space in
the added cell to

DF

' ■

Assign the next Place remaining free
free position in
the entry to DF

space on the empty
space list of F

\

Add the
DFand
tion to

entry for.
its descrip-
the Data Field

File

1-5,7-17

2,6,10

(jxjT)

Fig. 11. Define Data Field routine.

28

Descriptive Information Used by Routine

(1) Word position of name field in files. (Same for all files.)'

(2) Word position of entry link. (Same for all files.) t

(3) Location of entry F in Active file.

(4) Starting location of Data Field file.

(5) Word position of field type in Data Field file.

(6) Word position of empty space in Active file.

(7) Word position of cells/entry in Active file.

(8) Location of entry for Data Field file in Active file.

(9) Starting location of file F.

(10) Word position of cell link. (Same for all files.)t

(11) Starting location of Relations file.

(12) Word position of relation type in Relations file.

(13) Word position of ordering rule in Relations file.

(14) Word position of ordering field in Relations file.

(15) Word position of branch place, descend place, ascend
place, and return place (link positions) in Relation file.

(16) Word position of field place in Data Field file.t

(17) Word position of file start in Active file.t

t These items of information are in a fixed position.
All others are variable in location and are located
by using the former.

Fig. 11. Continued.

29

cells, the general overhead for cell linking is at most 10 percent. This overhead is clearly justi-

fied since, by allowing relocation of all storage cells, the dynamic storage allocation problem is

essentially eliminated.
The percent of storage for associative linking, required to implement relations between files,

depends on the ratio k of the number of relations defined on a file to the number of data fields

in the file. The percentage is then 50-percent k. Thus, for one relation for each four data
fields (k = 0.25), an additional 12| percent in storage is required. Such a ratio would rep-

resent a high degree of cross-association in large files.

Finally, the relative amount of storage unused due to partially filled cells decreases geo-

metrically with the number of data words stored per entry in a file set (D/p) and is equal to

(400F/D)%. Thus, for a file set in which the average number of data fields per file is 40, the
overhead in storage due to unfilled cells is 10 percent.

Thus, for most file sets, one can expect a total storage overhead in the range of 10 to 50

percent of the volume of data to be stored, varying according to the number of relations defined

and the size of the file entries.

B. Time Efficiency

The capability for the user to cross-associate his data files in arbitrary ways by use of

relations provides not only convenience in structuring files to suit the user's personal interests

but also the means for rapid file operations. As has been illustrated, the use of relations al-

lows (among other associations) construction of file-subfile hierarchies to any number of levels.

These multi-level associations are equivalent in form and utility to what, in list processing

terminology, are called "tree structures," with the exception that in conventional list processing

each point (node) in the tree structure would typically contain one symbol, whereas in our sys-

tem the node corresponds to a complete entry of data. This distinction provides the additional

advantage that nodes (entries) may belong to many different tree structures and the branching
criteria may depend upon the values of any of the data fields in the entry.

For searching and modifying large files, tree structures combine the best features of tab-

ular and list organizations of data. In tabular organizations, entries are stored in a known or-

dered form in sequential physical blocks of storage. Given a reference value to be matched with
the ordering field, the search can be conducted rapidly by repeated subdivisions of the entry

space. Search times for tabular organizations of data therefore require on the average log2 N

steps to locate the desired entry, where N is the total number of entries. However, to alter the

files, e.g., by adding or deleting entries, half the file contents (on the average) must be moved,

to retain the ordered sequential storage; this time cost grows linearly with N. In any large

system using tabular organizations and requiring both file access and dynamic modification, the

data movement times constitute the bulk of the time requirement.
Conventional list organization of data, on the other hand, avoids data movement operations

for file changes but requires searching to be conducted in a serial fashion. In list organizations,

the physical location of any entry bears no relation to the ordered position of the entry within the

file set. Entries are chained together in order by stored link addresses; addition or deletion
of an entry (once it is located) requires a negligible amount of processing time which is independ-

ent of the size of the file set. However, since searches must be conducted serially, search

times grow directly with the number of entries N (compared with log2 N for tabular organizations)

and for large files the time delays in searching would be prohibitive.

30

In tree structure organizations of data, entries are also located at arbitrary physical loca-

tions and linked by stored addresses to eliminate time requirements for altering file contents.

Rather than a simple list structure, however, the entries are organized into a many-level tree

which can be traversed more rapidly in search operations. The tree structure can be charac-
terized by a parameter b, the branching factor, which is the average number of nodes on the

next lower tree level associated with any node of the tree. In our system, in which the tree is

actually a multi-level file-subfile hierarchy, the branching factor corresponds to the average
number of entries associated as a subfile with any entry by the defined relations which form the

tree. With data structured in this way, search times vary according to (b/2) log,N, where b

is the branching factor and N is again the total number of entries in the file set. Thus, the

capability to organize files in tree structures provides both ease in altering of the files and

search times close to the minimum possible.

V. SYSTEM EXTENSIONS

The currently operating model of the system has satisfactorily demonstrated the versatility
of the filing and retrieval techniques and the ease of on-line user control of the system operations.

Many extensions of the command language are possible at this point. This section describes some

of these extensions and the steps required in their implementation. It should be noted that none
of the extensions described below require any modification of the basic files or of the present set

of storage and retrieval programs.

A. Group Relations

In the experimental model, a relation between files requires that the subsets of entries in
the linkee file be disjoint. A linkee entry cannot have more than one parent under any one

relation This is clearly a restriction we want to remove since in many instances a user will
want to associate parent entries in one file with overlapping subsets of entries in a linkee file.

In creating a bibliography, for example, one may want to link different reports with authors,

where each author may have multiple reports and each report may have multiple authorship. We
call a relation of this type, which associates overlapping subsets of entries in a linkee file with

entries in a parent file, a "group" relation.

One way of implementing such a relation within the framework of our model is illustrated

in Figs. 12 and 13. The system would create a dummy file consisting of pointers which would

tie together the overlapping subsets of file C to file A. The special "pointer" file B would not
appear as a named file in the Active file. The system would recognize its existence by the re-

lation code number. Figure 13 shows how the dual of the file in Fig. 12 would be created. The

dual would tie the entries of C back to A by way of entries in the same pointer file B. One would

very likely want the system to create the dual automatically with every group relation so as to

provide an easy two-way searching path.

B. Automatic Association

In the current model, when a user defines a new relation on two active files, he must specify

to the system the name of each entry and its associated subfile entries. Similarly, for the case

where entries are being added to a file which is related to other files, the user must specify,
by name, the parent or linkee entries in those files. This entry-by-entry association can be

M

|3-?»-4874(l)|

FILE C

Fig. 12. Group relation.

FILE A FILE B

Fig. 13. Group relation with linking.

vi

eliminated for a number of special cases. In these cases, the user can be permitted to relate

files in terms of conditions placed on the two files rather than by designating individual entries.
This can be done whenever an unambiguous mapping can be made between entries in the two files.

A relation can always replace data fields which are duplicated in two files. If, for example, de-

partment assignment is a data field in a personnel file and a file of departments also exists, then
the data field in the personnel file can be deleted and a relation defined which associates each man

with his respective department. The determination of which personnel entry must be associated

with which department file entry is, of course, trivial since it simply involves a matching of the

values in the assignment field with the department names.

Again if the relation to be defined maps a parent entry onto ordered subsets of the linkee

file, then the requirements for setting up the relation can be stated in the form of simple con-

ditions. For these cases, routines would be added to those which respond to the relation def-

inition command. In addition to asking the user the names of the files and the relation name,
the system would also ask the condition on which the relation is to be made.

Consider, for example, two files, one which contains the slots in a table of organization for

a military unit and one which contains the personnel for that unit. A user who wants to relate
the personnel to the table could define the relation in terms of a condition on the military rank

of each man in the file. Thus, he could specify for each slot the rank or range of the personnel

who fill it.

C. Tree Searching

The system, at present, provides the means for tree structuring (see Sec. IV-B) of the data

files by repeated use of relations. To search such trees, however, the user must, for each of

the levels in the tree, specify the relation and search conditions involved. A desirable extension

is that of providing special commands for constructing and searching such trees.
By use of the present command set, the user can index subject matter and form hierarchical

structures of the data files. The indexes (intermediate levels in the trees) may be files which

already exist or may be added to the system for that purpose with the * DEFINE FILE command.

By use of the * DEFINE RELATION command the user can then define a relation R^ which
associates the file in question with the index file. The user would next partition the index file
in a similar fashion, creating a new set of category names and a new relation R_. This pro-

cedure could be repeated to any desired level for relations R~, R., . . . , R . The system would

then have, in its relations file, n relations relating n + 1 files in a tree or hierarchical structure.
To illustrate this procedure, consider a file of library catalog cards and a tree structure

which divides the set of books named by the cards into topics and divides the topics into more

general subject categories. For simplicity, we assume no overlap in the categories, i.e., the

category names unambiguously partition the entries in the card file. (With the group relation

feature such overlapping would be possible.) Figure 14 shows a part of the tree structure.
Having constructed such tree structures, the user can locate selected subsets of the entries

by repeated application of the * SEARCH RELATION command. Of course, when the present
command is set, the appropriate file names and relation must be specified by the user.

A natural extension, allowing more facility at tree manipulation, is to identify and record

an entire tree by name. This can be done for example by defining a relation "TREE" which

associates the file upon which the tree is based with the set of n relations which form the

(n + l)-level tree.

J3

3-28-6056

General Subject (R„) Special Subject(R.)

Subject File

Philosophy

Mathematics-

Topic File

Metaphysics

Epistemology

Logic

I Ethics

Geometry

Calculus

Topology

Number Theory

Set Theory

Book File

Book 1
Book 2

Tree Structure Name: Book Subject
Relation 1 : Topic - Books
Relation 2: Subject — Topics

Fig. 14. Catalog card file.

M

This tree structure could now be given a name and entered into a file containing the tree

name, each of the relations defining the tree, and any other information the system might need

to search such a tree. To search through the tree, the system would go to the tree structure

file, find the appropriate tree, and systematically make a search by way of each of the relations

which defines the tree.

In this scheme, the index would identify the tree by name as one of the means for locating
subject matter specified in the query. Thus, in responding to a query asking for the author,

publisher, etc. , of books on topology, the system would find the tree named "Book-Subject,"

and then go to the tree file to determine how it should search that tree structure. It would first

search on the relation called "Subject-Topics" until it found topology and then search on the
relation "Topic-Books" to get the requested information on each book.

New commands and associated programs can then be added to the system which would pro-

vide the following additional services for the user:

(1) Automatic association of the file and relation set with the tree designation
given by the user.

(2) On-line description of the tree structure including the intermediate-level
categories.

(3) Execution of search requests including any number of restricting conditions
on categories and subcategories.

(4) Statistical summarization of counts of entries under selected portions of the
tree structure.

D. Macro Commands

An additional feature of great utility to the user is the capability to ask the system to re-

member extended sequences of commands and to execute them on demand. Among other uses,
this feature would provide automatic report generation on the present contents of selected por-

tions of the files.
This feature can be implemented by new commands which allow the user to enter and leave

a "record" mode during which the system would retain a record of the command sequence. Upon
leaving the record mode, the user would assign a new command name to the sequence which could

then be used at any later time to execute the entire command sequence. Facilities can also be

provided to allow the user to review, edit, and modify previously defined macro commands.

NOTE

The research described in this report was accomplished by

the following staff personnel: A. W. Armenti, J.A.Arnow,

D.E. Hall, D.A. Koniver, J. F. Nolan, H. C. Peterson,

and P. M. Wortman.

55

REFERENCES

1. F. J. Corbato, "System Requirements for Multiple Access, Time Shared Computers,"
MAC-TR-3, Computation Center, M. I.T. (1962).

2. F. J. Corbato, et aj., "The Compatible Time Sharing System, A Programmer's Guide,"
Computation Center, M. I.T. (1963).

3. J.A. Terrasi, "7090 File Generation System," W-4861, MITRE Corporation (18 April 1962).

4. A. Newall and F. Tonge, "An Introduction to Information Processing Language V,"
Commun. ACM 3, 205(1960).

5. A. J. Perlis and C. Thorton, "Symbol Manipulation by Threaded Lists," Commun. ACM
3, 195(1960).

6. J. Weizenbaum, "Knotted List Structures," Commun. ACM 5, 161 (1962).

ADDITIONAL REFERENCES

E. Franks, "LUCID System of Automatic Programming Directly from Data Processing
System Design Specifications," FN 6797/000/00, Systems Development Corporation
(9 August 1962).

 , "LUCID Control System Design," TM 1749/101/00, Systems Development
Corporation (27 January 1964), Vol. I.

J. J. Croke and W.K. Rawdon, "Query Languages in Data Retrieval Systems: Final
Report," TM-3727, MITRE Corporation (15 September 1963).

V.E. Giulano, et a]., "Automatic Message Retrieval," Arthur D. Little, Inc.
(November 1963).

A. Oettinger and S. Kuno, et aj., "Mathematic Linguistics and Automatic Translation,"
Report No. NSF-8, Computation Laboratory, Harvard University (January 1963).

A. K. Wolf, C. S. Chomsky, and B. F. Green, Jr. , "The Baseball Program: An Automatic
Question-Answerer," Technical Report 306, Lincoln Laboratory, M. I. T. (11 August 1963),
Vols. I and II, DDC 432038.

J6

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M. I. T.

2a. REPORT SECURITY CLASSIFICATION
Unclassified

2b. GROUP

None
3. REPORT TITLE

An Experimental On-Line Data Storage and Retrieval System

4. DESCRIPTIVE HOT ES (Type of report and inclusive dates)

Technical Report
5. AUTHOR(S) (Last name, first name, initial)

Nolan, John F. Armenti, Amedio W.

6. REPORT DATE

3 February 1965

la. TOTAL NO. OF PAGES

44

7b. NO. OF REFS

12

8a. CONTRACT OR GRANT NO. AF 19(628)-500
Office of Naval Research Contract Nonr-4102(01)

6. PROJECT NO.

9a. ORIGINATOR'S REPORT NUMBER(S)

Technical Report 377

9b. OTHER REPORT NO(S) (Any other numbers that may be
assigned this report)

ESD-TDR-65-36

10. AVAILABILITY/LIMITATION NOTICES

None

11. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Air Force Systems Command, USAF

Advanced Research Projects Agency,
Department of Defense

13. ABSTRACT

This report describes an experimental program system designed to test and demonstrate on-line
storage and retrieval of formatted data based on complete internal descriptions of the files. The
use of internal description allows each user (who need not be a trained programmer) to define,
modify, and cross-associate data files to suit his particular needs. The experimental program
system was implemented by remote use of the Compatible Time-Sharing System facilities of
Project MAC at the Massachusetts Institute of Technology.

14. KEY WORDS

data storage
information retrieval
time sharing

computer
data processing

rings
tree structures

37 UNCLASSIFIED

Security Classification

Printed by
United States Air Force
L G. Hanscom Field
Bedford, Massachusetts

